New tricks for old materials: The GlycomerTM 631 case Kyriakos Spanoudes¹, Geoffrey Hanley¹, Yves Bayon, ² Abhay Pandit¹, Dimitrios Zeugolis¹ Network of Excellence in Functional Biomaterials, National University of Ireland ²Covidien - Sofradim Production, Trevoux, France dimitrios.zeugolis@nuigalway.ie Keywords: Biomedical Engineering; Materials Science. #### **Abstract** GlycomerTM 631, a suture material (BiosynTM, Covidien) was used for the fabrication of a scaffold with aligned topography utilizing electrospinning technology. Human tenocytes cultured on the scaffold, remain viable, aligned and metabolically active after a 5-day period, providing indications that GlycomerTM 631 can find use as a tendon tissue engineering scaffold, ## 1. Introduction Tendon tissue engineering is becoming increasingly important, as current surgical treatment modalities based on tissue grafts and non-degradable polymers have numerous drawbacks, including (inter-species) disease transmission, foreign body response and scar tissue formation. Although electro-spun scaffolds based on biodegradable polymers have demonstrated promising results in both in vitro and in vivo setting, long-term implantation studies indicate suboptimal mechanical resilience [1,2]. Herein, we hypothesise that GlycomerTM 631, composed of 60% glycolide, 26% trimethylene carbonate and 14% dioxanone will maintain tenogenic phenotype in vitro and promote functional repair and regeneration in vivo. ## 2. Experimental Methods GlycomerTM 631 was dissolved in hexafluoro-isopropanol (HFIP) at 100mg/ml concentration. Using a rotating collector (1400 RPM) anisotropic electro-spun fibres were produced. Human patellar tendon tenocytes were expanded up to passage 3 in DMEM media, supplemented with 10% foetal bovine serum and 1% penicillin / streptomycin. 50,000 cells / cm2 were subsequently cultured for up to 5 days. Fibre orientation was assessed with Scanning Electron Microscopy (SEM). The influence of electro-spun fibres on cell viability and metabolic activity was assessed using Live/Dead® and alamarBlue® assays respectively. Cell morphometric analysis was carried out using DAPI and rhodamine conjugated phalloidin and subsequent image analysis (ImageJ). ## 3. Results and discussion Electrospinning of GlycomerTM 631, at 1400 RPM, yields a scaffold with aligned topography (fig 1). Tenocytes remain viable and maintain their metabolic activity on the electrospun GlycomerTM 631 scaffold, while they acquire an elongated morphology, parallel to the fiber orientation (fig 2&3). Fig. 1. A high degree (>80 %) of alignment of Glycomer™ 631 was achieved electrospinning. Fig. 2. Tenocytes remain viable & metabolically active up to 5 days in culture Fig. 3. High degree (>80 %) of alignment on human tenocytes on Glycomer[™] 631 electrospun. #### 4. Conclusions These preliminary *in vitro* data indicate that anisotropic electro-spun GlycomerTM 631 scaffolds provide a suitable microenvironment for tenocyte growth. Further mechanical analysis, protein and gene assays studies are under way. #### 5. References 1 K. Spanoudes, D. Gaspar, A. Pandit, D. Zeugolis, The biophysical, biochemical and biological toolbox for tenogenic phenotype maintenance *in vitro*, *Trends in Biotechnology*, Cell Press, Massachusetts USA, 2014, 472-482. 2. S.A. Abbah, K. Spanoudes, T. O'Brien, A. Pandit, D. Zeugolis, Assessment of stem cell carriers for tendon tissue engineering in pre-clinical models, *Stem Cell research and Therapy*, BioMed Central, UK, 2014, 1-9. ## 5. Acknowledgments Funding was generously provided by Science Foundation Ireland and Irish Research Council.